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Abstract. As the science of knowledge representation and automated reasoning 
advances, AI has the potential to radically change the artifacts, methodologies, and 
life cycles of software engineering. The most significant change will be when 
problems are formalized at the level of specifications rather than programs. This 
will greatly facilitate software reuse and modification. Achieving this potential 
requires overcoming many technical challenges, particularly the semi-automated 
synthesis of efficient and correct programs from specifications. The first part of 
this paper describes several methodologies for program synthesis and compares 
their ability to control the combinatorial explosion inherent in automated reason- 

As knowledge-based software engineering matures and increasingly auto- 
mates the softwareengineering l i e  cycle, software engineering resources will shift 
toward knowledge acquisition and the automated reuse of expert knowledge for 
developing software artifxts. The second part of this paper describes methodolo- 
gies for expanding the software life cycle to the knowledge life cycle. 

ing. 

1 Introduction 

In the early sixties large software projects, such as those undertaken for NASA’s Apllo 
program, forced software engineering to mature from an ad hoc endeavor practiced by 
small teams of programmers to a structured engineering discipline. Structured program- 
ming methodologies were developed to cope with the complexities of managing, 
specifying, designing, and implementing large software systems. Structured designs 
were captured through hand drawn diagrams depicting everything from project decom- 
position to dataand control flow. CASE (computer-aided software engineering) emerged 
in the eighties when it became economically feasible to computerize structured program- 
ming by providing graphical user interfaces to manipulate these diagrams. 

KBSE (knowledge-based software engineering) is a much more ambitious endeavor 
than current approaches to CASE. The key observation is that the current practice of 
modem software engineering lacks the sound mathematical basis characterizing other 
engineering disciplines. This limits the complexity of software systems that can be 
constructed with a high degree of reliability. Formal methods, the application of 
mathematical logic to software engineering, is just beginning to have an impact on real 
software engineering practice. The goal of KBSEis nothing less than the computerization 
of formal methods for all phases of the software life cycle [8]. 

KBSE addresses the essential tension between problem specification and efficient 
solution implementation. This tension makes it difficult to modify and reuse programs, 
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since efficient code incorporates constraints from all parts of a problem specification in 
the optimization of individual program fragments. Hence, local incremental changes to 
a problem specification often require extensive non-local changes to optimized code. 
Modification of production quality code is so time consuming that maintenance costs 
currently dominate software life cycle resources. Furthermore, reuse of production 
quality code has been difficult to achieve. Advances in programming language and 
compiler technology have raised the level of programming abstractions, but have not 
addressed the essential difference between optimized code suitable for efficient compu- 
tation and formal problem specifications suitable for reuse and modification. The current 
paradigms for programming languages cannot in principle bridge this gap, because to 
guarantee compiler performance the peephole on the source code used in optimizing 
machine language code must be limited. 

KBSE bridges this gap by introducing a new software development paradigm: 
problems are fist formalized at the level of the declarative semantics of an application 
domain, and then semi-automatically transformed to the operational semantics of an 
efficiently compileable programming language [8]. Formal methods provide the math- 
ematical basis for this transformation. Automated reasoning provides the means for 
carrying out the transformation. By raising the level at which problems are formalized, 
modification and reuse will be greatly facilitated. Furthermore, by introducing formal 
artifacts earlier in the software life cycle, mechanized support can be provided for the full 
spectrum of software engineering activities, from requirements engineering to validation 
and maintenance. 

Evolutionary improvements of current software engineering methodologies can be 
achieved with existing KBSE technology. Particularly promising are domain-specific 
program synthesis tools and re-engineering tools to modify and maintain existing code. 
However, achieving the full KBSE paradigm will require many technical advances. 
Foremost are search control for automated reasoning, and interactive assistance in 
requirements formalization and validation. 

Raising the level at which problems are formalized from the programming level to 
the specification level will eliminate many conceptual and design errors. These errors can 
cost over a hundred times more to fix during the testing phase than simple coding errors 
[ 11. This is one major motivation for applying formal methods even without computer- 
aided assistance. However, even at the specification level, formalization is a difficult 
process, and many of the most costly software errors can be traced back to the 
transformation from informal requirements to specifications. New methods for specifi- 
cation validation are needed. AI programming environments have already contributed to 
one method, rapid prototyping, in which executable specifications are developed in a very 
high level programming language and then validated interactively with end users. Other 
AI approaches to specification validation are described in 117, 18, 241 and their 
references. 

This paper first describes several methodologies for program synthesis with an 
emphasison searchcontrol, drawing upon theliterature and theauthor’sown work. It then 
contrasts knowledge-based methodologies for software engineering with methodologies 
based on CASE, and describes the evolution from the software engineering life cycle to 
the knowledge engineering life cycle. 
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2 Methodologies for Program Synthesis 

2.1 Constructive Theorem Proving 

Soon after Robinson [27] developed resolution as the first practical means for automated 
theorem proving in predicate logic, it was applied to automatic program synthesis. Green 
[61 and Waldinger [33] demonstrated the generation of small programs such as sorting 
algorithms through constructive proofs from specifications of the form: 
Vx3y Precondition(x) 3 Postcondition(x, y) 

In this specification schema x is a vector of input variables, y is a vector of output 
variables, andPrecondition(x) is a formula constraining the input variables. A construc- 
tive proof binds y to a term which makes the specification a theorem. If this term is 
composed of functions in the programming language and the only variables in the term 
are input variables, then the term represents a functional program. The inference process 
issimilar to logic programming: first the universally quantified variablesinx are replaced 
by unique constants, the formula Precondition(x) is asserted over these constants, and 
then Postcondition(x,y) is negated and resolution is repeatedly applied until a refutation 
is derived. The program term is built up through unification with the output variables y. 
Recursive and iterative constructs are derived through inductive proofs using inductive 
schemata or through additional inference rules. Manna and Waldinger [ 191 later devel- 
oped an elegant nonclausal variation suitable for manually controlled derivations. 

Initially it was hoped that advances in generic theorem proving strategies would 
sufficiently control search to enable automated derivations to scale up to large problems. 
While impressive progress was made during the early seventies [3], generic resolution 
strategies were never able to mitigate combinatorial explosion effectively. Program 
synthesis often requires deep reasoning; generating recursive and iterative programming 
constructs through inductive proofs considerably expands the combinatorial explosion. 
In retrospect, it is unlikely that general purpose theorem-proving strategies will ever be 
sufficient to control the combinatorial search inherent in automated program synthesis. 

2.2 Program Transformations 

An alternative approach to program synthesis is incremental transformation of specifica- 
tions to implementations through program transformations, i.e. oriented rewrite rules. In 
its purest form, the transformational approach is formalized by the semantics of 
conditional equational logic. In its more restricted variants the transformational approach 
can greatly reduce search 1231. It is also more adaptable than theorem proving to less 
formal knowledge engineering approaches, and can be viewed as an extension of current 
compiler technology. Transformations are typically oriented from higher level specifica- 
tion constructs to lower level implementation constructs, thus providing an overall 
direction to the search. Sets of rewrite rules are characterized by properties such as 
termination and confluence (guaranteed termination in a unique normal form). The 
Knuth-Bendix completion procedure [12], given an appropriate weighting scheme for 
terms and a set of rewrite rules, will addrewrite rules until the set becomes confluent. The 
Knuth-Bendix completion procedure is not guaranteed to terminate, and generally works 
only on small sets of rules and for restricted kinds of weighting schemes. 
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Despite the well-behaved search properties for restricted variants of program 
transformations, obtaining the same problem solving power as constructive theorem 
proving ultimately requires addressing the same combinatorial search issues. One way of 
increasing problem solving capability is to make the conditions for applying an inference 
rule more complex; but as the complexity is increased the amount of inference required 
typically increases exponentially. Furthermore, introducing general capabilities for 
producing recursive and iterative constructs requires expanded capabilities such as 
folding [4], in which a rewrite rule is reversed to introduce the application of a function 
from an instance of its definition. This reversal of rewrite rule orientation leads to a 
combinatorial explosion of possibilities. In general, as the scope of a transformation 
system is expanded to encompass a larger set of possible programs as output, the search 
space expands drastically. 

2.3 Manually Guided Program SynthesisNerification 

At the opposite extreme to totally automated search control, several early systems 
(e.g.[2]) hadtheuserselecteachprimitivestepof theinferenceor transformation process. 
Initially it was hoped that this approach would be a viable means for mechanically 
assisted program synthesis or verification. However, the sheer number of steps required 
made this approach infeasible outside of research settings or in applications such as 
avionics requiring extreme reliability. It was far easier to develop aprogram by hand than 
guide an inference system through the large number of primitive steps. 

The problems with totally automated search control using generic strategies and the 
other extreme of manual guidance of primitive inference/transformation rules has led to 
methodologies centered on human/computer partnerships and reuse. These include the 
intelligent assistant approach in which humans make strategic decisions while the 
computer carries out bounded searches, reuse of generic programs or derivations, and 
encoding of tactical and strategic program design knowledge. Each of these methodolo- 
gies introduces interacting knowledge representation and automated reasoning issues. 

2.4 Intelligent Programming Assistant 

Floyd [5] presentedan early vision of an intelligent programming assistant, in which the 
computer kept track of clerical details while the human made the important strategic 
decisions. A key issue is developing representations for program derivations that are 
human comprehensible and machine manipulable. The decision making also has to be 
factored to limit the search carried out by automated reasoning while presenting 
meaningful strategic decisions for the human user. These constraints rule out certain 
technologies such as clausal resolution. 

The programmer’s assistant project at MIT, spanning the years 1973 to 1992, was an 
influential effort particularly in the areaof re-engineering. The main achievements in the 
early years were the development of the plan formalism, a language independent 
repsentation for programs and programming knowledge, anddemonstration of KBEmacs, 
an editor for manipulating programs in this formalism. 

The plan formalism represented programs as flowcharts with explicit data and 
control flow arcs. The main innovation of the plan formalism was support for program- 
ming clichCs, which are reusable algorithmic fragments (such as enumeration over a file) 
that were engineered to correspond to expert human programming knowledge. Analyzers 
were developed for several programming languages that recognized instances of clich6s 
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in program text. The combination of analyzers and translators between the plan formal- 
ism and program text enabled significant re-engineering capabilities, such as modifica- 
tion of programs at the level of programming cliches and improved translation of 
programs between programming languages viaabstraction tothe plan formalism and then 
reimplementation in the target programming language 1341. 

However, the plan formalism lacked the semantic basis to provide generality and 
power; reasoning was carried out by ad hoc procedures. This limited the feasibility of 
extending the capabilities of KBEemacs. To address these limitations Rich [25] formal- 
ized the plan formalism into the plan calculus and then developed CAKE [2q, a layered 
automated reasoning system. CAKE is a careful integration of different automated 
reasoning capabilities (e.g. truth maintenance, propositional reasoning, equality, and 
types) that appears as an active knowledge base for software artifacts. CAKE’S automati- 
cally invoked inference procedures are constrained to run in polynomial time; user 
queries can invoke more time consuming reasoning procedures. Significant new capabili- 
ties for the programmer’s apprentice were implemented on top of the plan calculus and 
CAKE, including a debugging assistant [ 141 and a requirements assistant (RA) [28]. The 
RA is a good example of the interactive problem formalization assistance that can be 
provided through KBSE the RA notified a user when it detected ambiguity, contradic- 
tion, incompleteness, or inaccuracy in an evolving requirements specification. 

Several lessons can be learned from the evolution of MIT’s programmer assistant 
project. First, although a knowledge engineering approach is useful in the initial 
development of a representation meaningful to humans, achieving generality and power 
requires a semantically well defined formal representation with semantically well 
founded inference procedures. Without these, the implicit assumptions which facilitate 
an ad hoc approach become limitations hindering the expansion of a KBSE system. These 
factors will limit the expansion of current CASE systems, because of their shallow 
representations and ad hoc reasoning procedures. Second, developing the automated 
reasoning capabilities to support a formal representation requires significant engineering 
to avoid combinatorial explosion. 

2.5 Replaying Program Derivations 

An alternative to reusing high-level generic program fragments such as cliches is the 
reuse of program derivations. This approach spans the range from rote replay of 
derivations to derivational analogy 1201. Program derivation reuse is particularly 
appealing because it has the potential to support the incremental modification of 
specifications by rederiving efficient implementations through replay of the original 
derivation. When the replay system encounters part of the derivation which is no longer 
applicable, then it transfers control to the user. 

Derivational analogy replay systems have been successfully applied in domains such 
as VLSI design where the mapping from the input of the derivation system to the output 
is localized, that is, each part of the output is attributable to localized parts of the input. 
However, as discussed earlier, optimized code must potentially incorporate constraints 
from all parts of a specification. For this reason, substantial parts of the original program 
derivation might no longer be applicable after an incremental change in specification. To 
date, most derivational analogy replay systems for program synthesis have operated on 
representations of the enablement structure of transformation or inference rules. There is 
typically no representation in the derivation record of the purpose for applying a 
transformationinmeetingaperformancegoalfortheoptimizedcode(however, see 1351). 
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Thus there is insufficient information for making good analogies to other derivations 
when parts of the original derivation are no longer applicable. For these reasons, 
derivational analogy replay systems have had little more success so far than rote replay 
systems in program synthesis. 

2.6 Design Analysis 

While generic theorem proving or transformational strategies have had limited success 
in automating program synthesis, a more promising methodology is to develop efficient 
tactics for controlling automated reasoning for particular classes of software artifacts. 
Each tactic can be viewed in itself as a special purpose program synthesizer. However, 
because tactics are control programs for general purpose inference mechanisms, they can 
be easily combined. The following describes one methodology for developing tactics 
within the context of parameterized theories and algebraic specifications. The example 
used is the development of a tactic for synthesizing local search algorithms, more details 
can be found in [lS]. 

Design analysis is a methodology for formalizing both the structural properties 
common to a class of software artifacts and the genetic properties common to their 
derivations [30]. This formalization is then used to develop a design tactic that automati- 
cally designs an artifact in this class given a specification of its behavior. Design analysis 
formalizes intrinsic structural properties rather than properties specific to a particular 
programming language or application domain. By abstracting away these particular 
concerns, the resulting formalization is more broadly applicable. The objective is to find 
a general mathematical characterization of the structure of a class while at the same time 
capturing the features that provide search guidance for designing artifacts in a class. 

The first step of design analysis for algorithm synthesis is to study many examples 
of a naturally defied class of algorithms. For example, local search algorithms, also 
referred to as hill-climbing algorithms, are a natural class in which a feasible solution to 
an optimization problem is iteratively improved by searching a neighborhood of the 
solution for a better solution, and stopping when no neighboring solution is better. The 
second step of design analysis is to extract the features and structural constraints 
characterizing that class of algorithms. The neighborhood structure determines the 
properties of alocal search algorithm : exact neighborhood structures guarantee that local 
optimums are global optimums, while the weaker condition of reachability guarantees 
that all feasible solutions for a given input are mutually reachable. Reachability is a 
necessary condition for variants of local search that can bactrack out of local optimums, 
such as simulated annealing, to converge on global optimums. The third step is to 
formalize this characterization in a theory. The theory of neighborhood structures for 
local search algorithms is an extension of the theory for optimization problems. 

A basic problem is specified by defining a set of inputs D, a set of outputs R, an 
operation I that maps legal inputs to true, and an operation 0 that maps input/output pairs 
to true when the output is a feasible solution to the input. A basic problem specification 
is a tuple B= <D,R,I,O>. 

An optimization problem is specified by extending a basic problem specification 
with an ordering relation in which all pairs of feasible solutions are comparable. All such 
ordering relations can be formulated as a cost function that maps feasible solutions to a 
totally ordered set. For most problems the cost function maps feasible solutions to the 
integers, rationals, or reals. The totally ordered set is denoted (%,l>, where 32 is the set 
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and I is the total order relation. Thus an optimization problem is specified through a tuple 
Opt=@,R,I,O,%,l,cost). 

A local search theory LS = (Opt,N} is specified by an optimization problem and a 
neighborhood relation. Three axioms, two being optional, constrain the neighborhood 
relation, which is a ternary relation between an input and two elements of the output 
domain. First, each feasible solution is in its own neighborhood, sothat for any legal input 
the neighborhood relation is a reflexive relation on feasible outputs (Axiom LS 1). If the 
neighborhood structure is exact, then the local search theory will be called exact (Axiom 
LS2). Likewise, if the neighborhood structure is reachable, the local search theory will 
be called reachable (Axiom LS3). A local search theory for a particular optimization 
problem is defined by a mapping fiom the components of abstract local search theory to 
definitions of objects, functions andrelations in the problem domain. More formally, the 
mapping is a theory interpretation, which means that the abstract axioms are true when 
they are mapped to the problem domain theory. Abstract local search theory is defined 
as follows: 

Sorts D,R,% 
Operations 
I:D + boolean 
0:DxRjboo lean  
cost:DxR+% 
5:  % x % + boolean 
N:D x R x R + boolean 
Optimal(x,y) E V(y’)O(x,y’) * cost(x,y) 5 cost(x,y’) 

To derive a local search algorithm for a particular optimization problem, a partial 
mapping from this abstract local search theory to the components of an optimization 
problem is first created. Constraints fora suitable neighborhood relation are then derived 
by instantiating the abstract neighborhood axioms with these components. The main part 
of the design tactic is to derive the definition of a neighborhood relation from these 
constraints in terms of the problem domain. Once the neighborhood relation is defined, 
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an initial algorithm can be derived by instantiating a program schema with the compo- 
nents of the derived local search theory. This high-level algorithm can be further refined 
with optimization tactics such as partial deduction [13] and finite differencing [21]. 

Formalizing the structure of a class of software artifacts is by itself usually 
insufficient for providing mechanized design assistance; it is also necessary to formalize 
the structure of the derivations. In the example of local search algorithms, the axioms for 
reachability and exactness defined above are too general to avoid combinatorial explo- 
sion in automated reasoning. The axioms for reachability require induction over the 
transitive closure of neighborhoods, which can be difficult for automated theorem 
provers. The exact neighborhood axiom, as stated, does not provide sufficient structure 
f a  determing its satisfaction for most problems. (Typically, proofs for exact neighbor- 
hoods are done through reduction to problems with known exact neighborhoods such as 
linear programming, or through lemmas about convex functions.) 

To provide heuristic adequacy for guiding derivations, various specializations of the 
general structure are derived. For local search algorithms whose neighborhoods are 
reachable but not necessarily exact, most neighborhoods for efficient local search 
algorithms can be described as natural perturbations of data structures: Uhe key step in 
deriving a local search algorithm is the] “ ... selection of a neighborhood or a class of 
neighborhoods, and this is tied to the notion of a ‘natural’ perturbation of a feasible 
solution” ([22] pg. 469). The theory of groups and group actions provides the mathemati- 
cal basis for formalizing natural perturbations. 

A natural perturbation neighborhood is defined for a data structure by a set of 
permutations and a group action mapping these permutations to perturbations of each 
instance of the data structure. Thus the neighborhoods for all instances of the data 
structure are similar extentionally and have the same intentional description based on the 
set of permutations. Apermutation is any one-to-one (and hence invertible) function from 
some set of objects to the same set. The closure of this set of permutations under 
composition together with the group action defies three interrelated structures: a group 
of permutations, the mutually reachable data Structures, and the invariant properties of 
mutually reachable data structures. 

The specialization of reachable neighborhoods to natural perturbations entails only 
two restrictions on the reachable neighborhoods axiomatized in the abstract theory of 
local search. First, neighborhoods are required to be symmetric, that is if y is in x’s 
neighborhood then x is in y’s neighborhood. Most local search algorithms satisfy this 
condition. This condition ensures that if z is reachable from w then w is reachable from 
z. Second, the neighborhoods of all feasible solutions are similar; they have the same 
intensional description in terms of the set of permutations. These two restrictions are 
sufficient to enable the tools of gmup theory to be used in developing reachable 
neighborhood structures for a wide variety of optimization problems. The mathematics 
and proofs are fully developed in 1151. 

Specializing reachable neighborhoods to natural perturbation neighborhoods con- 
siderably simplifies automated reasoning. In particular, it is no longer necessary to do an 
inductive proof on the transitive closure of neighborhoods: reachability is ensured if and 
only if the invariant properties of a natural perturbation neighborhood are equivalent to 
the feasibility constraints for problem solutions. If the invariants are stronger than the 
feasibility constraints then some feasible solutions would not be reachable from other 
feasible solutions. If the invariants are weaker than the feasibility constraints then some 
feasible solutions would be mapped to infeasible solutions. 
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The local search design tactic developed in this approach matches a problem 
specification to a library theory whose invariants are equivalent or weaker than the 
feasibility constraints, and then specializes the library theory if the invariants are weaker. 
The library theories are defined for general set theoretic data structures, such as ordered 
sequences, as explained below. Reasoning about invariant properties and feasibility 
constraints provides a computationally tractable method of matching and then speeializ- 
ing theories in a library to problem specifications. The theorem prover does not have to 
reason directly about the second order reachability axioms - this has already been done 
by the creator of the library theories. 

Library theories are based on basic neighborhoods which are the subclass of natural 
perturbation neighborhoods in which the permutations are restricted to be all the 
transpositions of some underlying set, that is, permutations in which only two elements 
are interchanged. For example, one basic neighborhood structure for an ordered sequence 
is defined by all the transpositions of the indices of the sequence. Basic neighborhoods 
are typically overly general for any particular problem; the design tactic first matches a 
problem specification to a basic neighborhood and then specializes the basic neighbor- 
hood. The current library of parameterized natural perturbation neighborhood theories 
consists of a half dozen basic neighborhood definitions, which include specifications of 
their invariants. A basic neighborhood has the following definition schema as a ternary 
relation, where y,y’are neighboring feasible solutions with respect to inputx, and i, j are 
the elements that are transposed: 
hx,y,y’.3(i,j E S) y‘= Action(x,y,i,j) 

A local search library theory for a basic neighborhood consists of the basic 
neighborhooddefinitionanddefinitionsfor theother componentsofalocal search theory. 
It is presented as a mapping of the following form from abstract local search theory to a 
set of definitions: 

LS - basic theory 
D H datatypel(a) 
R H datatype2( a) 
I H 31x. P(x) 
0 ~ h r , y .  Invariant(x,y) 
N ~hx,y,y’ .  3(i,j E F(x))  y’= Action(x,y,i,j) 

For example, the following mapping from abstract local search theory defines the 
basic neighborhood structure for same-sized subsets of a given finite set S. The size of the 
subsets are a constant size m, the elements which are transposed are the elements of the 
finite set: 

LS - subset theory 
D H set(a) x integer 
R H s e t ( a )  
I H U,m. m 2 size(S) 
OHhS,m,y. ysSAsize(y)=m 
NHU,m,y,y’ .  3( i , j ) iE  (S-Y)A j~ YA y’=(yu{i})-{j} 

This theory can be matched to a wide range of problems including the class of ACS 
(additive cost subset) problems defined by Savage. A typical example is the minimal 
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spanning tree problem (MST), which is to find a minimally weighted subset of edges in 
a graph that span the nodes of the graph without any cycles. 

Given the specification of an optimization problem, the local search design tactic 
first matches the problem specification to a library theory for a basic neighborhood, and 
then specializes the library theory by finding necessary conditions on transpositions to 
ensure that feasible solutions are transformed to better feasible solutions. The design 
tactic takes the following steps; each step is a well defined inference problem with a 
manageable search space; the o v e d  effect is to replace a large search space with a 
sequence of smaller search spaces: 

1. Retrieve and match basic neighborhood theories from the library indexed by the type 
of feasible solution. A theory matches a problem specification if the invariants of the 
theory are necessary conditions of the feasibility constraints of the specification. 

2. Determine necessary preconditions on the transpositions that ensure that a feasible 
solution is perturbed to a feasible solution. 

3. Determine necessary preconditions on the transpositions that ensure that a feasible 
solution is perturbed to a better feasible solution. 

4. (Optional step for deriving exact local search algorithms) Determine necessary 
conditions for a local optimum to be a global optimum. 

5.  Instantiate a program schema with the components of the theory where the derived 
preconditions on transpositions are guards on the application of a transposition. 

Proofs for the correctness of the tactic and a detailed description illustrated with the 
derivation of the simplex algorithm canbe found in [ 151. This design tactic was developed 
as an extension of the KIDS system [31]. A generalization of the methods for matching 
library theories to problem specifications is presented in [32]. 

2.7 Summary of Methodologies for Program Synthesis 

The previous subsections have reviewed various methodologies for automated or semi- 
automated program synthesis. In order to generate production quality code from high 
level problem specifications, a program synthesis system should be able to incorporate 
constraints from all parts of a specification into each program fragment. This cannot be 
achieved by translation systems which restrict the window on the source code considered 
in optimizing the output code. 

The general dilemma is that the number of possible programs that can be generated 
from a given specification is combinatorially explosive. General purpose methods have 
not been found for efficiently searching this space for efficient programs; it is unlikely 
any such universal methodexists. However, as described above, currently there are some 
effective techniques for capturing theknowledge used by expert human programmers and 
applying it in automated fashion. Even setting aside the issue of program correctness, it 
is worthwhile capturing this knowledge within a formal representation with semantically 
well-founded inference methods. This avoids the limitations that arise when trying to 
generalize and expand ad hoc methods. To avoid intractable searches during automated 
program synthesis, it is necessary for knowledge representations and inference methods 
to be carefully designed in tandem to limit search spaces. It is likely that as continued 
progress is made in automated program synthesis, improvements in formal knowledge 
representations will be driven as much by considerations of making inference tractable 
as by theoretical considerations in mathematical logic. 
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3 From the Software Life Cycle to the Knowledge Life Cycle 

The previous section described various methodologies for program synthesis. While 
automated program synthesis is necessary to raise software engineering from the 
programming level to the specification level, it is only one component of the KBSE 
paradigm. As KBSE matures and increasingly automates the software engineering life 
cycle, software engineering resources will increasingly shift toward knowledge acquisi- 
tion and the automatedreuseof knowledge for developing software artifacts. This section 
describes how the various components of KBSE could interact. 

Knowledge, like software, has its own characteristic life cycle. The knowledge life 
cycle is the maturation of design knowledge for an application domain from the initial 
research stage to the cookbook engineering stage. Knowledge-based design tools can 
provide support at stages of the knowledge life cycle that are not well supported with 
conventional software design tools. Furthermore, knowledge-based design tools have the 
potential of significantly compressing the knowledge life cycle. 

One principle objective of KBSE is to compress the software life cycle with 
knowledge-based tools. By its very nature, knowledge-based design depends on the 
maturity of knowledge about an application domain. As knowledge about an application 
domain is developed by scientists and engineers, the design process for that domain 
makes a transition from creative and innovative design to routine and cookbook design. 
Different kinds of design tools are appropriate at different stages of the knowledge life 
cycle. One of the main anticipated advantages of KBSE is the ability to leverage the 
expertise of scientists and engineers by capturing their design knowledge at all stages of 
the knowledge life cycle. 

An example of the knowledge life cycle is the development of the theory and 
technology for designing parsers used in compilers and other language-processing 
systems. Early parsers in the late fifties were ad hoc systems. Not only was there a lack 
of a theory of parsing to guide their design, there was not even a theory of grammars that 
specified the function of aparser. Thus the design of early parsers was creative: both the 
structure and function were unknown and ill-defined. The development of the BNF 
formalism in the early sixties clarified the function of a parser: to produce a trace of the 
BNFrules used to generate a text string from the text string itself. At this stage the design 
of parsers became innovative: the function was known, but the structure of possible 
solutions was still unexplored. 

The mid sixties to the mid seventies witnessed rapid development of the theory and 
technology for parsing. First, recursive descent parsing was formalized, enabling parser 
development to become a routine design task. While routine, the design of these early 
recursive descent parsers required the configuration of a set of procedures, Le., configu- 
rational design. By the late sixties, several table-driven parsers were developed operator 
precedence, LL parsing, and LR parsing. (These early parsing formalisms did not handle 
left recursion, which required the development of LALR parsing.) Designing a table- 
driven parser is now a routine parametric design process, that is, the output of a design 
is a set of parameters for a specialized representation. When knowledge about an 
application domain becomes this advanced, then automated design tools can be readily 
developed with conventional software technology. Hence in the late sixties and seventies, 
parser generators were developed that take a specification of a grammar and automati- 
cally generate the parameters for a table-driven parser. 
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Figure 1. Spectrum of knowledge-based tools in the knowledge life cycle. 

Figure 1 shows how knowledgebased design tools fit into the spectrum from 
creative design to routine parametric design. The horizontal axis denotes the level of 
human expertise required to use the tool, while the diagonal line separates specification 
tools from program derivation tools. The figure illustrates thatknowledge-based tools can 
be used much earlier in the knowledge life cycle than current CASE tools. Domain 
modeling tools use a formal modeling language to express knowledge about an applica- 
tion domain. This knowledge can be used for different operational goals throughout the 
software life cycle, from requirements engineering to re-engineering. Domain modeling 
is the first step in moving from creative design to routine design. Because domain 
modeling is essentially the formalization of domain knowledge it requires a high degree 
of expertise, both in the application domain and in knowledge representation formalisms. 
During the innovative phase of the knowledge life cycle, general purpose interactive 
program synthesis systems could be used to explore the solution space for an application 
domain. Many of these general purpose systems have facilities forrecording, editing, and 
replaying derivation histories. These replay facilities might enable users with less 
expertise than the original designer to develop derivations for similar specifications [20]. 
Given domain knowledge from a domain modeling tool, formal specifications can be 
developed and incrementally modified with tools such as A R E S  [9]. 

Figure 1 also illustrates that knowledge-based tools can be employed by users with 
lower levels of expertise than required for current CASE tools. Front end CASE tools 
enable designers to define and edit software abstractions like data flow diagrams during 
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the initial stages of system design. However, because these CASE tools lack application 
domain knowledge they require more expertise and provide lower levels of verification 
and simulation capabilities than can be provided with knowledge-based tools. A good 
example of a knowledge-based specification tool is the WATSON system 1111, which 
interactively elicits and validates requirements for new telephone features (such as call 
waiting) from telephony engineers using domain level scenarios. Back end CASE tools 
such as application generators (e.g., parser generators) are currently widely used for the 
fmal stages of coding, particularly in commercial dataprocessing. They consist of a menu 
driven or application language front end and a template-driven code generator back end. 
As such they are suitable for routine parametric design. In contrast, domain-specific 
program synthesis systems also can be used for routine configurational design and have 
a high level user interface that reduces the expertise needed by an end-user. Because 
SystemslikeELF [29] andSYNAPSE [ 101 combinetemplatedrivencode generation with 
more powerful AI semantic processing techniques and transformation rules, they can 
tackle routine configurational design in addition to parametric design. They also produce 
more optimal code than an application generator. 

Creative 

Innovative 

Routine 
Configurational 

Routine 
Parametric 

Tools 

High Expertse 
Needed 

Low Expertise 
Needed 

Figure 2. Transfer and reuse of expertise in the KBSE paradigm. 

Knowledge-based technology, by providing an active medium for communication 
of knowledge, can also potentially compress the knowledge life cycle. In the absence of 
major advances in machine discovery, the development of design knowledge will 
continue to be a human-intensive process requiring high levels of expertise. However, 
knowledge-based tools could assist human research scientists and engineers in the 
development of this knowledge. These tools could then compile and transfer this 
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knowledge into shells that do interactive requirements elicitation, redesign, specification 
acquisition, and domain-specific program synthesis. 

Figure 2 illustrates this transfer of expertise using knowledge-based subsystems; a 
more detailed exposition can be found in [16]. The domain modeling assistant and 
program design assistant would be used by scientists and engineers during the creative 
and innovative stages of the knowledge life cycle. The specification acquisition shell 
would support future system analysts in developing formal system specifications, while 
the redesign shell would enable system developers to construct software systems rapidly 
by editing and replaying derivation histories developed with a program design assistant. 

For end-users with low expertise, requirements elicitation shells would use domain 
knowledge to develop interactively formal specifications of their requirements using 
informal examples. Domain-specific program synthesis shells would then synthesize a 
system meeting these requirements. Note that whilea system developer with intermediate 
expertise could be expected to understand and manipulate derivation histories to develop 
a software system, an end user with low expertise would require totally automatic 
program synthesis. Thus a domain specific synthesis shell would require more highly 
compiledcontrolknowledge forcontrolling software derivation than aredesign shell, i.e., 
tactics or large-grained compiled transformations as opposed to interpreting and manipu- 
lating derivation histories. 

4 Conclusion 

Knowledge based software engineering is based on research spanning over two decades. 
Significant commercial applications are likely within this next decade, particularly as 
industrial pilot projects in domain specific program synthesis and re-engineering mature. 
Interest in formal methods will also spur development of the field. However, to achieve 
the full paradigm requires many technical advances in knowledge representation and 
automated reasoning. This paper has described various methodologies for making 
automatedreasoning tractable for program synthesis. Further improvements are likely to 
require that knowledge representations for program design expertise be developed in 
tandem with automated reasoning methods. 

The paradigm of the knowledge life cycle can help to clarify the role of knowledge- 
based software engineering tools and guide their development. Different kinds of 
knowledge-based tools are appropriate at different stages of the knowledge life cycle. 
Furthermore, knowledge-based tools can expedite the transfer of expertise from research 
scientists and engineers and thus compress the knowledge life cycle. 
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